Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 1

Гормоны растений

Гиббереллины.

Гиббереллины широко распространены в растениях и регулируют целый ряд функций. К 1965 было идентифицировано 13 молекулярных форм гиббереллинов, очень сходных химически, но весьма различающихся по своей биологической активности. Среди синтетических гиббереллинов чаще всего применяется вырабатываемая микробиологической промышленностью гибберелловая кислота.

Важный физиологический эффект гиббереллинов – ускорение роста растений. Известна, например, генетическая карликовость у растений, при которой резко укорочены междоузлия (участки стебля между узлами, от которых отходят листья); как выяснилось, это связано с тем, что у таких растений генетически заблокировано образование гиббереллинов в процессе метаболизма. Если, однако, ввести в них гиббереллины извне, то растения будут расти и развиваться нормально.

Многим двулетним растениям для того, чтобы выбросить стрелку и зацвести, требуется в течение определенного времени пребывание либо при низкой температуре, либо на коротком дне, а иногда и то и другое. Обработав такие растения гибберелловой кислотой, их можно заставить зацвести в условиях, при которых возможен только вегетативный рост.

Подобно ауксинам, гиббереллины способны вызывать партенокарпию. В Калифорнии их регулярно применяют для обработки виноградников. В результате такой обработки грозди получаются более крупными и лучше сформированными.

Во время прорастания семян решающую роль играет взаимодействие гиббереллинов и ауксинов. После набухания семени в зародыше синтезируются гиббереллины, которые индуцируют синтез ферментов, ответственных за образование ауксина. Гиббереллины также ускоряют рост первичного корешка зародыша в то время, когда под влиянием ауксина оболочка семени разрыхляется и зародыш растет. Первым из семени появляется корешок, а за ним и само растеньице. Высокие концентрации ауксина вызывают быстрое удлинение стебелька зародыша, и в конце концов верхушка проростка пробивает почву.

Биосинтез, катаболизм и инактивация ауксинов

Основное место биосинтеза ИУК в растении — молодые листья и их примордии. Помимо растений, способностью к биосинтезу ИУК обладают некоторые грибы и патогенные бактерии (например, представители родов Agrobacterium и Pseudomonas, поражение которыми вызывает аномальное разрастание тканей растения-хозяина). У растений существуют два пути синтеза ИУК: подробно изученный триптофан-зависимый путь и триптофан-независимый путь, который до сих пор является гипотетическим. Триптофан-зависимый путь представляет собой синтез ИУК из триптофана в несколько этапов. Существует несколько вариантов триптофан-зависимого пути биосинтеза ИУК, основными из которых являются синтез через индолпировиноградную (IPA) кислоту, через индолацетамид (IAM), через триптамин (ТАМ) и через индолацетальдоксим (IAOx). У разных видов растений преобладает тот или иной вариант триптофан-зависимого биосинтеза ИУК — например, у арабидопсис и других крестоцветных преобладающим является путь синтеза через IAOx; для Agrobacterium и Pseudomonas характерен путь синтеза через IAM. Триптофан-зависимый путь биосинтеза ИУК изучен весьма подробно; у растений и бактерий выделены ферменты, катализирующие все стадии разных его вариантов, выявлена значительная часть генов, кодирующих эти ферменты. Интересно, что мутанты с потерей функции генов, действующих на разных этапах триптофан-зависимого пути биосинтеза ИУК, часто характеризуются не пониженным, а повышенным содержанием ауксинов в тканях. Причиной этого является резкая активация других вариантов триптофан-зависимого пути синтеза ИУК при обрыве одного из них.

Помимо триптофан-зависимого пути биосинтеза ИУК, у растений существует триптофан-независимый путь, про который, несмотря на длительность изучения этого вопроса, абсолютно ничего не известно. Доказательством существования такого пути является получение жизнеспособных мутантов арабидопсис (trp l, 2, 3, 4 и 5) и кукурузы, дефектных по синтезу триптофана. Это мутанты с потерей функции генов, контролирующих разные стадии синтеза триптофана из его предшественника хоризмата. У них не синтезируется триптофан, но тем не менее наблюдается нормальный или даже многократно повышенный уровень ИУК. Вероятно, при невозможности работы у таких мутантов триптофан-зависимого пути биосинтеза ИУК у них происходит активация гипотетического пути синтеза ИУК без использования триптофана.

У растений также существует несколько путей инактивации ИУК: во-первых, это образование индолбутировой кислоты (ИБК) — запасной формы ауксинов, во-вторых — образование конъюгатов с аминокислотами и сахарами. Конъюгаты обладают слабовыраженной ауксиновой активностью и также являются запасными формами ауксинов. Синтез конъюгатов осуществляет большая группа ферментов GH3-1. Экспрессия генов GH3-1 позитивно регулируется ауксинами — таким образом, имеет место негативная обратная связь в контроле уровня активной ИУК. Кроме того, у арабидопсис выявлены многочисленные ферменты, осуществляющие гидролиз конъюгатов с образованием активной ИУК, клонированы кодирующие их гены. Мутанты с потерей функции этих генов накапливают соответствующие конъюгаты и обладают повышенной чувствительностью к ним.

Гормоны цветения.

Гормонами цветения считают флориген и верналин. Предположение о существовании особого фактора цветения высказал в 1937 русский исследователь М.Чайлахян. Позднейшие работы Чайлахяна позволили сделать вывод, что флориген состоит их двух главных компонентов: гиббереллинов и еще одной группы факторов цветения, названных антезинами. Для зацветания растений необходимы оба этих компонента.

Предполагается, что гиббереллины необходимы длиннодневным растениям, т.е. таким, которым для зацветания требуется достаточно длительный светлый период суток. Антезины же стимулируют цветение короткодневных растений, зацветающих лишь тогда, когда длина дня не превышает определенного допустимого максимума. По-видимому, антезины образуются в листьях.

Гормон цветения верналин (выявленный И.Мельхерсом в 1939) необходим, как полагают, двулетним растениям, нуждающимся на протяжении некоторого времени в воздействии низких температур, например зимних холодов. Он образуется в зародышах прорастающих семян или в делящихся клетках верхушечных меристем взрослых растений.

Ауксины и их синтетические заменители

1.
Для усиления корнеобразования
у черенков. Обработка нижних концов
черенков ИУК в концентрации
50 мг/л вызывает их усиленное дыхание,
приток к ним питательных
веществ, при этом процесс корпеобразования
усилива­ется.

2.
Для образования партенокарпических
плодов, повышения урожая
томатов и некоторых других культур.
Опрыскивание цветков томатов
раствором синтетических регуляторов
роста типа ауксина (например,
трихлорфеноксиуксусной кислоты в
концентрации 50
мг/л) приводит к образованию
партенокарпических бессемянных плодов.
При этом плоды растут быстрее и
характеризуются более
высоким содержанием сахаров. Одновременно
с усилением роста пло­дов
в результате перераспределения
питательных веществ рост веге­тативных
органов (пасынков) замедляется. К
недостаткам этого приема
следует отнести большую подверженность
образующихся пло­дов
различного рода заболеваниям.

3.
Для предохранения плодов от предуборочного
опадения. При большом количестве
завязавшихся плодов
определенная доля их опадает до
созревания. Регуляторы типа ауксина,
вызывая дополнительный приток питательных
ве­ществ
к плодам, препятствуют образованию
отделительного слоя. Обработка
деревьев проводится α-нафтилуксусной
кислотой в кон­центрации
10 мг/л за две недели до уборки.

4.
Для ускорения про­растания
семян некоторых растений. Этот прием
дает благоприят­ные
результаты лишь на мелкосемянных
растениях, поскольку круп­ные
семена содержат достаточное количество
собственных гормонов. Хорошие
результаты получены при обработке семян
сахарной свек­лы
ИУК в концентрации 10 мг/л.

5.
В высоких концентрациях регу­ляторы
роста типа ауксина, например
2,4-дихлорфеноксиуксусная кислота
(2,4 Д), могут применяться как селективные
гербициды. По­скольку для разных видов
растений оптимальные концентрации
фи­тогормонов
различны, то это позволяет использовать
2,4 Д в качестве селективного гербицида
для борьбы с сорняками в посевах злаковых
культур.
Показано, что
различная устойчивость растений к
2,4-дихлорфеноксиуксусной
кислоте связана с различиями в скорости
ее детоксикации (обез­вреживания)
в организме.

Гиббереллины.

1.
Под влиянием гиббереллина заметно
усиливает­ся
рост стебля конопли. Увеличивается
выход волокна с гектара.

  1. Опрыскивание
    в концентрации 25 мг/л повышает урожай
    зеленой
    массы
    кормовых бобов. Однако урожай семян
    при этом снижается.

  2. Обработка
    в концентрации 50 мг/л цветков сортов
    винограда с
    функционально
    женскими цветками вызывает образование
    бессемянных
    плодов и повышение их урожая.

  3. С
    помощью обработки гиббереллином
    можно прерывать период покоя клубней
    картофеля, а также
    семян некоторых растений.

  4. В
    ряде случаев обработка гиббереллином
    заменяет процесс стратификации семян.

  5. Гиббереллин
    заметно
    ускоряет процесс прорастания семян
    ячменя, что используется
    в пивоваренной промышленности при
    получении солода.

Цитокинииы.
С
помощью кинетина можно регулировать
рост и морфогенез
изолированных тканей. Это приобретает
все большее практическое
значение, поскольку таким путем удается
получить большое количество тканей,
содержащих определенные лекарствен­ные
вещества, а также получить чистые линии
(однородного генети­ческого
потомства) в селекции.

Синтетические
ингибиторы роста — ретарданты.
Во
многих слу­чаях
появляется необходимость задержать
рост стебля с целью по­лучения
большей устойчивости растений против
полегания, что, в свою
очередь, повышает урожай и облегчает
уборку. Задержка роста вегетативных
органов бывает иногда полезна для
лучшего развития плодов и семян. В
настоящее время синтезировано много
веществ, ко-
торые обладают свойством задерживать
рост растений. Упомянем не­которые
из таких веществ: 1) хлорхолинхлорид
(ССС). Этот препа­рат
задерживает рост стебля, тормозит
прорастание семян, тормозит цветение
растений длинного дня. Возможно, что
торможение роста стебля
связано с тем, что ССС ингибирует
образование гиббереллинов;
2) гидразид малеиновой кислоты (ГМК)
тормозит рост расте­ний.
Особенно эффективно его применение на
травах.

Историческая перспектива

С первых открытий веществ, способных действовать как «растительные гормоны», мы начали подозревать, что должна существовать молекула, ингибирующая рост..

В 1949 году эта молекула была выделена. Благодаря изучению спящих почек было установлено, что они содержат важные количества потенциально ингибирующего вещества..

Это было связано с блокированием действия ауксина (гормона растений, известного в основном своим участием в росте) у колеоптилей овес.

Из-за своих ингибирующих свойств это вещество изначально называется дормин. Впоследствии некоторые исследователи выявили вещества, способные усиливать процесс отреза в листьях, а также в плодах. Один из этих дорминов был идентифицирован химически и назван «абсцизиной» — по его действию во время абсциссии..

Следующие исследования были в состоянии подтвердить, что звонки dorminas и абсцисины были химически одним и тем же веществом, и оказалось, что они названы абсцизовой кислотой..

Влияние на организм синильной кислоты

В плодах и листья многих деревьев содержится – синильная кислота. Самыми полезными считаются косточки абрикоса, в которых есть полезное вещество – амигдалин. Он обладает такими действиями:

  • противомикробным,
  • антиоксидантным,
  • улучшает иммунитет,
  • помогает при артрите,
  • справляется с простудой,
  • повышает метаболизм.

Благодаря этому, косточки абрикоса, остаются популярными в народной медицине уже много тысячелетий. Больше всего полезного вещества содержится  в дикорослых деревьях.

Мнение ученых о применении синильной кислоты против рака разошлись. Одни считают, что употребление косточек может привести даже к смерти, а другие наоборот трубят о полезности. В связи с этим для профилактики необходимо принимать не больше чем 5 ядер в день.

Простые способы лечения сложных заболеваний:

Как принимать против онкологии

Необходимо высчитать необходимое количество: на 5 кг массы тела — 1 косточка. Если у человека 50 кг, то он должен принимать 10 семечек в день. Принимать необходимо ядро косточки. Если появляются такие симптомы как: тошнота, рвота, головокружение, дозу необходимо немедленно снизить. Употреблять нужно только свежие ядра абрикоса, или же витамин В17. Курс проводить не менее 3-х месяцев.

Полярный транспорт ауксинов

Поскольку основным местом биосинтеза ИУК являются апикальные части побега, необходим базипетальный транспорт ИУК в нижележащие органы растения. Существуют два вида транспорта ауксинов.

1. Быстрый транспорт по флоэме, представляющий собой перемещение ауксинов с потоком метаболитов и питательных веществ. Таким способом могут перемещаться по растению как активная ИУК, так и её конъюгаты.

2. Полярный транспорт ауксинов (ПАТ) характерен только для активной ИУК и происходит в основном по клеткам перицикла и молодым (живым) сосудистым элементам. При полярном транспорте имеет место вход ИУК в клетку с одной стороны и выход из неё с противоположной, в обоих процессах задействованы разные группы белков-переносчиков. Это транспорт более медленный и имеет строго выраженную направленность: в частности, в побеге он направлен базипетально, от апикальной меристемы и молодых листьев к корню; в кончике корня происходит разворот ПАТ, и дальше ИУК движется акропетально до зоны образования боковых корней. ИУК — единственный фитогормон, обладающий сложноорганизованной системой полярного транспорта; от направления ПАТ в различных органах растения зависит полярность их развития.

Определенные вещества, например, нафтилфталамовая кислота (NPA) и 2,3,5-трийодбензойная кислота (TIBA), специфически блокируют ПАТ. При этом происходит накопление ИУК внутри клеток, что позволило предположить существование по-разному организованных входных и выходных (influx и efflux) каналов для полярного транспорта ИУК, причем направление ПАТ связано с расположением входного и выходного канала на разных сторонах клетки (соответственно, на апикальной и базальной). Блокирование ПАТ с помощью NPA и TIBA связано с их влиянием на работу выходного канала.

Цинковые удобрения.

Недостаток цинка чаще всего проявляется у плодовых и цитрусовых на карбонатных почвах с нейтральной и слабощелочной реакцией. В этом случае у деревьев слабо закладываются плодовые почки, на концах ветвей образуются побеги с укороченными междоузлиями и мелкими листьями («розеточность»), плоды бывают уродливые и мелкие. Среди полевых культур к недостатку цинка чувствительны кукуруза, фасоль, соя, картофель и некоторые овощные растения. Валовое содержание цинка в почвах колеблется от 25 до 65 мг на 1 кг почвы. Более подвижен и доступен растениям цинк в кислых почвах. Бедны им карбонатные почвы, особенно зафосфаченные, вследствие систематического применения высоких норм фосфорных удобрений. На этих почвах чаще возникает потребность в цинковых удобрениях.

Применение цинковых удобрений

В качестве цинковых удобрений применяют сульфат цинка (ZnSО4·7Н2О), содержащий 21—23% Zn, цинко-суперфосфат, содержащий 0,1% Zn в водорастворимой форме и отходы промышленности, в частности шлаки медеплавильных заводов, содержащие 2—7% Zn, последние чаще всего вносят в почву в дозе 0,5—1,5 ц на 1 га. ZnSО4 применяют для некорневой подкормки (200—400 л 0,01—0,02%-ного раствора на 1 га) и предпосевной обработки семян (6—8 л 0,05—0,1%-ного раствора на 1 ц семян). Обогащенный цинком суперфосфат вносят в почву при посеве и в основное удобрение.

Потребность в микроудобрениях.

Потребность различных сельскохозяйственных культур в отдельных микроэлементах на разных почвах неодинакова. Хорошо окультуренные систематически удобряемые навозом почвы обычно содержат достаточное количество подвижных форм микроэлементов и поэтому не требуют внесения микроудобрений

ПУБЛІКАЦІЇ ЯКІ МОЖУТЬ БУТИ ДЛЯ ВАС ЦІКАВИМИ
  • https://agrostory.com/info-centre/knowledge-lab/stimulyatory-i-regulyatory-rosta-rasteniy/
  • https://ppt-online.org/312470
  • https://ooonvpgumat.com.ua/kakaya-raznica-mezhdu-gumatom-kaliya-i-gumatom-natriya.html
  • https://agromage.com/stat_id.php?id=56
  • http://infoindustria.com.ua/aminokislotyi-v-sostave-udobreniy-moda-ili-neobhodimost/
  • https://studfiles.net/preview/5081350/page:3/

Лечение рака аспирином

Медиками-учеными было доказано, что при каждодневном приеме на протяжении не менее 5 лет, аспирин уменьшает риск появления опухолей, а также останавливает прогрессирование этого заболевания. Исследовалось влияние  на рак ацетилсалицилой кислоты, и хорошие результаты были достигнуты при раке кишечника.

Благодаря исследованиям медиков-новаторов стало известно, что аспирин:

  • усиливает действие иммунотерапии,
  • борется с лейкемией, раком прямой кишки и других
  • помогаетбыстро восстановиться после химиотерапии на 25%.

Применение для лечения и профилактики

Применять таблетки аспирина против раковых образований можно, только в маленьких дозах и  не менее 4 лет. Но это применение  будет иметь эффект только на некоторые виды рака.

Также, есть данные что полоскание ацетилсалициловой кислотой при раке горла за два часа снижает интенсивность боли в горле. Этот эффект длился более шести часов.

Исследования по применению синильной, золедроновой, липоевой, ацетилсалициловой и абсцизовой кислоты для лечении рака в комбинации с другими медикаментами дают «неоднозначные результаты». Поэтому, чему верить — опыту народной медицины или современной точке зрения — решать только вам.

Здоровья Вам!

Полезные статьи:

Абсцизовая кислота и рак

Абсцизовая кислота(АБК) – это гормон растений, который занимается регулированием процессов:

  • увядания листьев,
  • опадания,
  • способствует покою семян,
  • тормозит рост растения.

Патент на лечение этой кислотой получила страна США в 1984 году. По словам специалистов, растения выделяют уникальный гормон, который вырабатывает абсцизовую кислоту, что защищает растение в засуху и не дает погибнуть. Именно этот растительный гормон способен размножать в пищеварительном тракте человека полезные бактерии, которые распространяются по всему организму.

Ученые утверждают, что если диету человека обогатить растительными продуктами богатыми абсцизовой кислотой, это поможет в лечении онкологии. Рекомендуют применять АКБ только после того как опухоли были удалены.

Какие функции выполняет АБК по отношению к онкоболезням:

  • угнетает развитие лейкемии,
  • усиливает борьбу иммунной системы,
  • применяется к любой стадии рака,
  • помогает уничтожить раковые клетки,
  • применяется при раке крови,
  • справляется с любой формой онкологии.

Вместе с кислотой, необходимо внести в рацион продукты, которые будут помогать в укреплении иммунитета: говяжью печень, молоко, рыба, овощи.

Применение и форма выпуска

Существует жидкая и твердая форма выпуска кислоты. Твердая — продается в виде порошка в капсулах по 10 мг. Бытует мнение, что жидкая форма является эффективнее. Перед применением растворяют в дистиллированной воде, этиловым спиртом и полисорбатом.

Цена на АКБ варьируется  от 50 до 90 долларов в зависимости от количества миллилитров. Стоить заметить, что продают аптеки абсцизовую кислоту  только по назначению врача.

Биосинтез

Предшественниками биосинтеза цитокининов в растениях являются свободные АТФ и АДФ, а также тРНК. Первая стадия биосинтеза цитокининов — синтез изопентил-нуклеотидов из АТФ или АДФ и диметилаллилпирофосфата — катализируется ферментом изопентенилтрасферазой (IPT). Кроме IPT, у растений выявлены ферменты тРНК-IPT, использующие в качестве субстрата тРНК — они используются для синтеза цис-зеатина. В дальнейшем изопентенил-нуклеотиды могут превращаться в зеатин-нуклеотиды с помощью фитохром P450-монооксигеназ. Наконец, последней стадией является получение активных цитокининов из цитокининовых нуклеотидов путём дефосфорилирования и дерибозилирования — это реакция катализируется ферментом 5’монофосфат-фосфорибогидролазой, который кодируется геном LOG.

Фермент аденозинфосфатизопентилтрансфераза катализирует первую реакцию в биосинтезе изопреновых цитокининов, фермент использует АТР, ADP или AMP как субстрат и диметилаллилдифосфат или гидроксиметилбутенилдифосфат как донор пренильной группы. Данная реакция является лимитирующей в биосинтезе цитокининов, субстраты—доноры пренильных групп образуются в пентилэритрол-фосфатном биохимическом пути.

У растений и бактерий цитокинины также могут образовываться из продуктов распада тРНК. Транспортные РНК, с антикодоном, начинающимся с уридина и имеющие пренилированные аденозины рядом с антикодоном, освобождают при деградации аденозины как цитокинины. Пренилирование таких аденинов осуществляется тРНК-изопентилтрансферазой

Показано также, что ауксины регулируют биосинтез цитокининов.

По последним данным, разные этапы биосинтеза цитокининов осуществляются в разных тканях растения. Основным местом синтеза цитокининовых нуклеотидов является кончик корня, небольшое их количество синтезируется также в апексе побега, цветках и плодах. По ксилеме цитокининовые нуклеотиды доставляются в апекс побега, который является основным местом синтеза активных свободных цитокининов.

Общие сведения

В отличие от животных, растения не имеют специальных органов, синтезирующих гормоны; вместе с тем отмечается большая насыщенность гормонами некоторых органов по сравнению с другими. Так, ауксинами богаче всего верхушечные меристемы стебля, гиббереллинами — листья, цитокининами — корни и созревающие семена. Фитогормоны обладают широким спектром действия.

Фитогормоны регулируют многие процессы жизнедеятельности растений: прорастание семян, рост, дифференциацию тканей и органов, цветение, созревание плодов и т. п. Образуясь в одном органе (или его части) растения, фитогормоны обычно транспортируются в другой (или его часть).

Биосинтез

По своей химической природе АБК, как и гиббереллины, является терпеноидом; у этих двух групп гормонов-антагонистов есть общий предшественник — геранилгеранил-дифосфат, который также является предшественником хлорофилла. Из ГГДФ синтезируются каротиноиды, их производным является зеаксантин, который является первым предшественником в пути биосинтеза АБК.

Биосинтез АБК в растении происходит в основном в молодых сосудистых пучках, а также в замыкающих клетках устьиц. Основными этапами биосинтеза АБК являются:

  1. Синтез виолоксантина из зеаксантина, который катализируют ферменты зеаксантин-эпоксидазы (ZEP).
  2. Синтез неоксантина из виолоксантина, который катализируют две группы ферментов: неоксантин-синтазы (NSY) и изомеразы, важные для синтеза цис-изомеров виолоксантина и неоксантина.
  3. Синтез ксантоксина из цис-неоксантина, который катализируют 9-цис-эпоксикаротеноид-диоксигеназы (NCED).
  4. Синтез АБК из ксантоксина через АБК-альдегид, две последовательные стадии которого катализируются ксангоксин-дегидрогеназой (АВА2) и АБК-альдегидоксидазой (ААОЗ).

Первые три этапа биосинтеза АБК, как и синтез каротиноидов, проходят в пластидах, последний — в цитозоле.

У животных

Было также обнаружено, что АБК присутствует у многоклеточных животных , от губок до млекопитающих, включая человека. В настоящее время его биосинтез и биологическая роль у животных малоизучены. Недавно было показано, что ABA вызывает сильные противовоспалительные и антидиабетические эффекты на мышиных моделях диабета / ожирения, воспалительного заболевания кишечника, атеросклероза и инфекции гриппа. Многие биологические эффекты у животных были изучены с использованием АБК в качестве нутрицевтического или фармакогностического препарата, но АБК также генерируется эндогенно некоторыми клетками (например, макрофагами ) при стимуляции. Существуют также противоречивые выводы из различных исследований, в которых одни утверждают, что АБК необходима для провоспалительных реакций, тогда как другие демонстрируют противовоспалительные эффекты. Как и многие природные вещества с лечебными свойствами, АБК стала популярной также в натуропатии . Хотя ABA явно обладает полезной биологической активностью, и многие натуропатические средства содержат высокий уровень ABA (например, сок ростков пшеницы, фрукты и овощи), некоторые из заявлений о здоровье могут быть преувеличенными или чрезмерно оптимистичными. В клетках млекопитающих АБК нацелена на белок, известный как лантионинсинтетаза С-подобный 2 ( LANCL2 ), запуская альтернативный механизм активации гамма-рецептора, активируемого пролифератором пероксисом (PPAR гамма) . LANCL2 является консервативным в растениях и первоначально предполагалось, что он является рецептором ABA также у растений, который позже подвергся заражению.

Общие свойства

Химические соединения, которые вырабатываются в одних частях растений и оказывают своё действие в других, проявляют свой эффект в исключительно малых концентрациях, обладают (в отличие от ферментов) обычно меньшей специфичностью действия на процессы роста и развития, что объясняется разным состоянием работы генов воспринимающих клеток, от которого зависит результат действия гормона, а также разным соотношением между собой различных фитогормонов (гормональным балансом). Эффект фитогормонов в значительной мере определяется действием других внутренних и внешних измений.

Примечания

  1. Лутова Л.А., Ежова Т.А., Додуева И.Е., Осипова М.А. Генетика развития растений. / С.Г. Инге-Вечтомов. — Санкт-Петербург, 2011. — С. 432. — ISBN 978-5-94869-104-6.
  2. Chen, C. et al. 1985. Localization of Cytokinin Biosynthetic Sites in Pea Plants and Carrot Roots. Plant Physiology 78:510-513.
  3. Mok, DWS and Mok, MC. 2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology 52: 89-118
  4. Sakakibara, H. 2006. Cytokinins: Activity, Biosynthesis, and Translocation. Annual Review of Plant Biology 57: 431—449
  5. Физиология растений: учебник для студентов ВУЗов / под ред. И. П. Ермакова.
  6. Kieber JJ (2002 Cytokinins. In CR Somerville, EM Meyerowitz, eds, [www.aspb.org/publications/arabidopsis/ The Arabidopsis Book]. American Society of Plant Biologists, Rockville, MD, doi: 10.1199/tab.0009
  7. ↑ Ildoo Hwang, Hitoshi Sakakibara (2006) Cytokinin biosynthesis and perception Physiologia Plantarum 126 (4), 528—538
  8. ↑ Kaori Miyawaki, Miho Matsumoto-Kitano, Tatsuo Kakimoto (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate The Plant Journal 37 (1), 128—138
  9. Nordström, A. 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. PNAS 101:8039-8044

Функции

Среди функций АБК наиболее известными являются контроль закрывания устьиц, стимуляция созревания зародыша и периода покоя семян, ингибирование прорастания. Кроме того, АБК является одним из центральных регуляторов адаптации растений к абиотическим стрессам — таким, как высыхание, засоление и низкая температура.

Абсцизовая кислота особенно важна для поддержания водного баланса в условиях засухи; недостаток влаги ведет к резкой активации синтеза АБК и её выходу из мест депонирования во внутри- и внеклеточное пространство. К числу быстрых эффектов АБК, которые имеют место через несколько минут после повышения её концентрации, относится асимметричный транспорт ионов калия, кальция и анионов через мембрану замыкающих клеток устьиц, в результате чего замедляется поступление воды в клетки, их тургор падает, что приводит к закрытию устьичной щели. Одновременно абсцизовая кислота активирует всасывание воды корнями. Помимо этого, АБК является одним из ключевых регуляторов развития семян. АБК регулирует созревание зародыша, препятствует преждевременному прорастанию семян при их созревании, продлевает период покоя зрелых семян, спящих почек, клубней и корнеплодов.

Показана роль абсцизовой кислоты в опадании листьев. При подготовке к зиме абсцизовая кислота синтезируется в концевых почках растений. Это приводит к замедлению роста, а из прилистников образуются защитные чешуйки-колеоптели, покрывающие спящие почки в холодный период. Абсцизовая кислота останавливает деление клеток камбия и останавливает первичный и вторичный рост.

Функции

Среди функций АБК наиболее известными являются контроль закрывания устьиц, стимуляция созревания зародыша и периода покоя семян, ингибирование прорастания. Кроме того, АБК является одним из центральных регуляторов адаптации растений к абиотическим стрессам — таким, как высыхание, засоление и низкая температура.

Абсцизовая кислота особенно важна для поддержания водного баланса в условиях засухи; недостаток влаги ведет к резкой активации синтеза АБК и её выходу из мест депонирования во внутри- и внеклеточное пространство. К числу быстрых эффектов АБК, которые имеют место через несколько минут после повышения её концентрации, относится асимметричный транспорт ионов калия, кальция и анионов через мембрану замыкающих клеток устьиц, в результате чего замедляется поступление воды в клетки, их тургор падает, что приводит к закрытию устьичной щели. Одновременно абсцизовая кислота активирует всасывание воды корнями. Помимо этого, АБК является одним из ключевых регуляторов развития семян. АБК регулирует созревание зародыша, препятствует преждевременному прорастанию семян при их созревании, продлевает период покоя зрелых семян, спящих почек, клубней и корнеплодов.

Показана роль абсцизовой кислоты в опадании листьев. При подготовке к зиме абсцизовая кислота синтезируется в концевых почках растений. Это приводит к замедлению роста, а из прилистников образуются защитные чешуйки-колеоптели, покрывающие спящие почки в холодный период. Абсцизовая кислота останавливает деление клеток камбия и останавливает первичный и вторичный рост.

Ауксины в саду

Если обработать сад этим веществом в осенний период, эффект будет длиться лет пять, не больше. Поэтому дачники отдают предпочтение сезонным удобрениям, например:

  • калийно-фосфорные удобрения, которые хороши после сбора урожая;
  • натуральные подкормки грунта в зиму.

Но все же ауксины помогут увеличить урожайность в вашем саду. Вещество используют для предотвращения опадания плодов раньше времени. Другими словами, обработку производят, когда «падалица» просто не нужна

В то же время следует отметить, что использовать фитогормоны нужно крайне осторожно – передозировка может привести к негативным последствиям необратимого характера

Ауксины ответственны и за фототропизм – ростовые изгибы органов в ответ на одностороннее освещение

Другие фитогормоны гиббереллины / цитокаины / брассины

Помимо ауксинов для полноценной жизнедеятельности растений нужны другие вещества этой группы:

  • Гиббереллины в отличие от ауксинов не перераспределяют питательные вещества по органам растения, а лишь накапливают их. Это играет решающую роль в образовании и формировании плодов (см. → как применять гиббереллины, отзывы садоводов).
  • Цитокинины способствуют делению почечных клеток, их начальному росту и дальнейшему развитию. Также, регулируют процесс старения листьев.
  • Брассины, которые обеспечивают полноценную работу иммунной системы растения.

В продаже встречаются стимуляторы роста с фитогормонами разной направленности:

  • Кендал,
  • Марс,
  • Эпин – Экстра (⊕ применение Эпин для растений и рассады),
  • Циркон (⊕ как применять Циркон для растений) и др.
Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации